如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.
已知向量=(1,1),向量 与向量的夹角为,且· . (1)求向量; (2)若向量与向量= (1,0)的夹角为,向量=(),其中A,C是△ABC的内角,且A,B,C依次成等差数列,试求|+|的取值范围.
旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条. (1)求3个旅游团选择3条不同的线路的概率(2)求恰有2条线路没有被选择的概率.(3)求选择甲线路旅游团数的期望.
已知向量,.(1)求证:为直角; (2)若,求的边的长度的取值范围.
已知函数的定义域为,值域为[-5,4];函数 . (Ⅰ) 求函数g(x)的最小正周期和最大值; (Ⅱ) 当, 且g(x) =5时, 求tan x.
甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局,求:(1)乙取胜的概率;(2)比赛进行完七局的概率。(3)记比赛局数为,求的分布列为数学期望.