如图,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的体积;
(3)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.
如图是某三棱柱被削去一个底面后的直观图与侧(左)视图、俯视图.已知CF=2AD,侧(左)视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示.求该几何体的体积.
如图所示是一几何体的直观图、正(主)视图、侧(左)视图、俯视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)求几何体BEC-APD的体积.
已知四棱锥PABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(1)求证:DE∥平面PFB;
(2)已知二面角PBFC的余弦值为,求四棱锥PABCD的体积.
已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角线的正方形)如图,E是侧棱PC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求证:平面APC⊥平面BDE.
下图是一几何体的直观图、主视图、俯视图、左视图.
(1)若为的中点,求证:面;
(2)证明面.
(3)求该几何体的体积.
如图,是圆柱体的一条母线,过底面圆的圆心,是圆上不与点、重合的任意一点,已知棱,,.
(1)求证:;
(2)将四面体绕母线转动一周,求的三边在旋转过程中所围成的几何体的体积.
在斜三棱柱中,侧面平面,,为中点.
(1)求证:;
(2)求证:平面;
(3)若,,求三棱锥的体积.
请您设计一个帐篷,它下部的形状是高为1m正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?
如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.
⑴试用半径表示出储油灌的容积,并写出的范围.
⑵当圆柱高与半径的比为多少时,储油灌的容积最大?
如图,已知直三棱柱中,,,,D为BC的中点.
(1)求证:∥面;
(2)求三棱锥的体积.
如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,.
(Ⅰ)求证:平面;
(Ⅱ)求三棱锥的体积.
如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知
(1)求证:AD平面BCE
(2)求证:AD//平面CEF;
(3)求三棱锥A-CFD的体积.
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了并流入杯中,会溢出杯子吗?请用你的计算数据说明理由。(冰、水的体积差异忽略不计)