(12分) 如图8-12,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。
如图所示,等腰三角形
的底边
,高
.点
是线段
上异于
的动点.点
在
边上,且
.现沿
将
折起到
的位置,使
.
记
表示四棱锥
的体积。
(1)求
的表达式;
(2)当
为何值时,
取得最大值?
(3)当
取得最大值时,求异面直线
与
所成角的余弦值。 
(本小题满分14分)如图,在四棱锥
中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点,作
交PB于点F.
(I) 证明:PA∥平面EDB;
(II) 证明:PB⊥平面EFD;
(III) 求三棱锥
的体积.
本小题8分
如图一线段
所在直线方程为
,线段
所在直线方程为
,线段
所在直线方程为
,求四边形
绕
所在直线旋转一周所围成的几何体的表面积和体积
(本题满分12分,第(1)小题6分,第(2)小题6分)
如图,
是圆柱体
的一条母线,
过底面圆的圆心
,
是圆
上不与点
、
重合的任意一点,已知棱
,
,
.
(1)求直线
与平面
所成的角的大小;
(2)将四面体
绕母线
转动一周,求
的三边在旋转过程中所围成的几何体的体积.