如图所示,等腰三角形 △ A B C 的底边 A B = 6 6 ,高 C D = 3 .点 E 是线段 B D 上异于 B , D 的动点.点 F 在 B C 边上,且 E F ⊥ A B .现沿 E F 将 △ B E F 折起到 △ P E F 的位置,使 P E ⊥ A E . 记 B E = x , V ( x ) 表示四棱锥 P - A C F E 的体积。 (1)求 V ( x ) 的表达式; (2)当 x 为何值时, V ( x ) 取得最大值? (3)当 V ( x ) 取得最大值时,求异面直线 A C 与 P F 所成角的余弦值。
过点的直线与抛物线相交于两点,求以为邻边的平行四边形的第四个顶点的轨迹方程.
设点M为抛物线上一动点,F为焦点,O为坐标原点,求的取值范围.
(1)过抛物线焦点F作x轴的垂线交抛物线于A、B两点,且,求m的值;(2)求焦点在直线上的抛物线标准方程.
已知双曲线,是右顶点,是右焦点,点在轴的正半轴上,且满足,,成等比数列,过作双曲线在第一、三象限的渐近线的垂线,垂足为.(1)求证:;(2)若直线与双曲线的左、右两支分别相交于点,求双曲线的离心率的取值范围.
求过点,离心率为的双曲线的标准方程.