(1)过抛物线焦点F作x轴的垂线交抛物线于A、B两点,且,求m的值;(2)求焦点在直线上的抛物线标准方程.
试求曲线y=sinx在矩阵MN变换下的函数解析式,其中M=,N=.
已知矩阵M=,求M的特征值及属于各特征值的一个特征向量.
已知M=. (1)求逆矩阵M-1; (2)若矩阵X满足MX=,试求矩阵X.
将双曲线C:x2-y2=1上点绕原点逆时针旋转45°,得到新图形C′,试求C′的方程.
已知二阶矩阵M有特征值=8及对应的一个特征向量e1=,并且矩阵M对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M; (2)求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系.