(1)如图,证明命题"a是平面
内的一条直线,b是
外的一条直线(b不垂直于
),c是直线b在
上的投影,若
,则
"为真。
(2)写出上述命题的逆命题,并判断其真假(不需要证明)
已知函数,
(1)求函数的定义域;
(2)求函数在区间上的最小值;
(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
已知,设p:函数在(0,+∞)上单调递减,
q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.
已知,命题:对任意,不等式恒成立;命题:存在,使得成立
(Ⅰ)若为真命题,求的取值范围;
(Ⅱ)当,若且为假,或为真,求的取值范围。
(Ⅲ)若且是的充分不必要条件,求的取值范围。
设命题“对任意的”,命题 “存在,使
”.如果命题为真,命题为假,求实数的取值范围.
设命题p:关于x的不等式2|x-2|<a的解集为;命题q:函数y=lg(ax2-x+a)的值域是R.如果命题p和q有且仅有一个正确,求实数a的取值范围.