高中数学

若函数上单调递增,那么实数的取值范围是(    )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产品(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
(注:年利润=年销售收入-年总成本)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
学校要建一个面积为392 m2的长方形游泳池,并且在四周要修建出宽为2m和4 m的小路(如图所示)。
问游泳池的长和宽分别为多少米时,占地面积最小?并求出占地面积的最小值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设定义在上的函数是最小正周期为的偶函数,当时,,且在上单调递减,在上单调递增,则函数上的零点个数为         

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,且,求证:(1)
(2)函数在区间内至少有一个零点;
(3)设是函数的两个零点,则.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数
(I)当时,求函数的单调区间;
(II)若函数的图象在点处的切线的倾斜角为45o,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数①f(x)=x2;②f(x)=ex;③f(x)=ln x;④f(x)=cos x.其中对于f(x)定义域内的任意一个x1都存在唯一的x2,使f(x1)f(x2)=1成立的函数是(  )

A.① B.② C.②③ D.③④
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙,地面利用原地面均不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,屋顶每平方米造价20元.
(1)仓库面积的最大允许值是多少?
(2)为使面积达到最大而实际投入又不超过预算,正面铁栅应设计为多长?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分分)已知函数是不同时为零的常数).
(1)当时,若不等式对任意恒成立,求实数的取值范围;
(2)求证:函数内至少存在一个零点.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知均是定义域为的偶函数,且时,,则的大小关系为

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分分)
若函数在定义域内某区间上是增函数,而上是减函数,
则称上是“弱增函数”
(1)请分别判断=是否是“弱增函数”,
并简要说明理由;
(2)证明函数(是常数且)在上是“弱增函数”.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.函数的图象必过定点(   )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=ax+x-b的零点x0∈(n, n+1) (n∈Z),其中常数a, b满足2a=3,3b =2,则n的值是 (    )

A.-2 B.-1 C.0 D.1
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若定义在R上的偶函数上单调递减,且,则不等式
的解集是(   )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=x2 (x≠0).
(1)判断f(x)的奇偶性,并说明理由;
(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题