(本题共2小题,满分14分。第1小题满分6分,第2小题满分8分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,造成堵塞,此时车流速度为千米/小时;当车流密度不超过辆/千米时,车流速度为千米/小时,研究表明;当时,车流速度是车流密度的一次函数.
(1)求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某一点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
我国加入WTO时,据达成的协议,若干年内某产品关税与市场供应量的关系允许近似满足(其中,为关税的税率,且,为市场价格,、为正常数),当时,市场供应量曲线如图:
⑴根据图象求的值;
⑵记市场需求量为,它近似满足,当时,市场价格称为市场平衡价格,当市场平衡价时,求税率的最小值。
本题共有3个小题,第1小题满分5分,第2小题满分6分,
第3小题满分7分.
对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U型”函数。
(1)求证:函数是上的“U型”函数;
(2)设是(1)中的“U型”函数,若不等式对一切的恒成立,
求实数的取值范围;
(3)若函数是区间上的“U型”函数,求实数和的值.
(本小题满分12分)设函数,(且)。
(1)设,判断的奇偶性并证明;
(2)若关于的方程有两个不等实根,求实数的范围;
(3)若且在时,恒成立,求实数的范围。
.(本小题满分12分)
已知函数是定义在实数集R上的奇函数,当>0时,
(1)已知函数的解析式;
(2)若函数在区间上是单调减函数,求a的取值范围;
(3)试证明对.
(本小题满分12分)
某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低.
如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10,两栏之间的中缝空白的宽度为5,怎样确定广告的高与宽的尺寸(单位:),能使矩形广告面积最小?
(本小题满分12分)
某单位建造一间地面面积为12 平方米的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米 ,房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,如果墙高为3米,且不计房屋背面的费用.(1)把房屋总造价y表示成x的函数,并写出该函数的定义域;(2)当侧面的长度为多少时,总造价最低?最低造价是多少?
(本小题满分14分)已知函数;
(1)若,求的值域;(2)在(1)的条件下,判断的单调性;(3)当时有意义求实的范围。
(本小题满分14分)如图所示,某市政府决定在以政府大楼O为中心、正北方向
和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考
虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正
面要朝市政府大楼.设扇形的半径OM=R ,,OB与OM之间的夹角为.
(1)将图书馆底面矩形ABCD的面积S表示成的函数.
(2)若 R=45 m,求当为何值时,矩形ABCD的面积S有最大值?
其最大值是多少?
已知二次函数(是常数,且)满足条件:,且方程有两个相等实根.
(1)求的解析式;
(2)是否存在实数,使的定义域和值域分别为和?若存在,求出的值;若不存在,说明理由.
(本小题满分14分)
在△ABC中,BC=2,AB+AC=3,中线AD的长为y,AB的长为x,
(1) 建立y与x的函数关系式,并指出其定义域.
(2) 求y的最小值,并指出x的值.