(本小题满分14分)如图所示,某市政府决定在以政府大楼O为中心、正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R ,,OB与OM之间的夹角为.(1)将图书馆底面矩形ABCD的面积S表示成的函数.(2)若 R=45 m,求当为何值时,矩形ABCD的面积S有最大值?其最大值是多少?
已知函数,满足,且,为自然对数的底数. (1)已知,求在处的切线方程; (2)若存在,使得成立,求的取值范围; (3)设函数,为坐标原点,若对于在时的图象上的任一点,在曲线上总存在一点,使得,且的中点在轴上,求的取值范围.
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于两个不同的点. (1)求曲线的方程; (2)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由; (3)记的面积为,的面积为,令,求的最大值.
已知数列中,,,记为的前项的和,,. (1)判断数列是否为等比数列,并求出; (2)求.
如图,在四棱锥中,底面为正方形,平面,已知,为线段的中点. (1)求证:平面; (2)求二面角的平面角的余弦值.
某大型公益活动从一所名牌大学的四个学院中选出了名学生作为志愿者,参加相关的活 动事宜.学生来源人数如下表:
(1)若从这名学生中随机选出两名,求两名学生来自同一学院的概率; (2)现要从这名学生中随机选出两名学生向观众宣讲此次公益活动的主题.设其中来自外语学院的人数为,令,求随机变量的分布列及数学期望.