如图,已知是椭圆的右焦点;圆与轴交于两点,其中是椭圆的左焦点.(1)求椭圆的离心率;(2)设圆与轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.
设为实数,函数。(1)若,求的取值范围 (2)求的最小值 (3)设函数,直接写出(不需要给出演算步骤)不等式的解集。
已知函数,若函数的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数的图象:(1)写出的解析式 (2)记,讨论的单调性 (3)若时,总有成立,求实数的取值范围。
在已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为,(1).求的解析式 (2).当时,求的值域。
设函数,其中,(1)证明:是上的减函数;(2)解不等式
在中,内角对边的边长分别是,已知,(1)若的面积等于,求;(2),求的面积。