高中数学

(本小题满分12分)某工厂生产一种仪器的元件,由于受生产能力和技术水平的
限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间满足关系:
(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品)
已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,那么(    )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,则不等式的解集为
(   )

A. B.
C. D.(1,2)
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若函数的零点与的零点之差的绝对值不超过0.25,则可以是(    )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数满足,且是偶函数,当时,,若在区间内,函数有三个零点,则实数k的取值范围是(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;
(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,则的值为(   )

A. B. C. D.-54
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

方程至少有一个负根,则(   )        

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

a > 0 , b > 0 ,已知函数 f ( x ) = a x + b x + 1
(Ⅰ)当 a b 时,讨论函数 f ( x ) 的单调性;
(Ⅱ)当 x > 0 时,称 f ( x ) a , b 关于 x 的加权平均数.
(1)判断 f ( 1 ) , f ( b a ) , f ( b a ) 是否成等比数列,并证明 f ( b a ) f ( b a )
(2) a , b 的几何平均数记为 G .称 2 a b a + b a , b 的调和平均数,记为 H .若 H f ( x ) G ,求 x 的取值范围.

来源:2013年普通高等学校招生全国统一考试文科数学
  • 更新:2023-11-15
  • 题型:未知
  • 难度:未知

下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(  )

A.y=cos 2x,x∈R
B.y=log2|x|,x∈R且x≠0
C.y=,x∈R
D.y=x3+1,x∈R
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,则的大小关系是(  )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,一元二次方程有整数根的充要条件是=    

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数满足:,则=_____________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数的定义域为(   )

A. B. C. D.
来源:2012届年吉林省长春外国语学校高三第一次月考数学
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题