(本小题满分12分)某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间满足关系:(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品)已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;(2)当日产量为多少时,可获得最大利润?
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小
如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形且∠C1CB=∠C1CD=∠BCD=60°. (1)证明:C1C⊥BD; (2)假定CD=2,CC1=,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值; (3)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点. (1)求的长; (2)求cos<>的值; (3)求证:A1B⊥C1M.
四棱锥P—ABCD中,底面ABCD是一个平行四边形,={2,-1,-4},={4,2,0},={-1,2,-1}. (1)求证:PA⊥底面ABCD; (2)求四棱锥P—ABCD的体积; (3)对于向量={x1,y1,z1},={x2,y2,z2},={x3,y3,z3},定义一种运算: (×)·=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1,试计算(×)·的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义..
若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.