(本小题满分12分)某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间满足关系:(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品)已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;(2)当日产量为多少时,可获得最大利润?
设函数,,其中为实数,若在上是单调减函数,且在上有最小值,求的取值范围.
已知数列{}满足+=2n+1() (1)求出,,的值; (2)由(1)猜想出数列{}的通项公式,并用数学归纳法证明.
现有5名男司机,4名女司机,需选派5人运货到吴忠. (1)如果派3名男司机、2名女司机,共多少种不同的选派方法? (2)至少有两名男司机,共多少种不同的选派方法?
复数,. (1)为何值时,是纯虚数?取什么值时,在复平面内对应的点位于第四象限? (2)若()的展开式第3项系数为40,求此时的值及对应的复数的值.
已知.求证:.