高中数学

定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知是定义在R上的奇函数,又是周期为2的周期函数,当时,,则的值为_____

来源:2012届年吉林省长春外国语学校高三第一次月考数学
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知定义在上的函数满足,则不等式的解集为_____________

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

定义在上的偶函数满足,且在上是增函数,下面是关于f(x)的判断
关于点P()对称        ②的图像关于直线对称;
在[0,1]上是增函数;        ④.
其中正确的判断是_____________________(把你认为正确的判断都填上)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定函数①,②,③,  ④,期中在区间(0,1)上单调递减的函数序号是(    )

A.①② B.②③ C.③④ D.①④
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,则的取值范围是(   )

A.(0,1) B.(0, C.(,1) D.(0,1)∪(1,+∞)
来源:2012届年吉林省长春外国语学校高三第一次月考数学
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

a > 0 , b > 0 ,已知函数 f ( x ) = a x + b x + 1
(Ⅰ)当 a b 时,讨论函数 f ( x ) 的单调性;
(Ⅱ)当 x > 0 时,称 f ( x ) a , b 关于 x 的加权平均数.
(1)判断 f ( 1 ) , f ( b a ) , f ( b a ) 是否成等比数列,并证明 f ( b a ) f ( b a )
(2) a , b 的几何平均数记为 G .称 2 a b a + b a , b 的调和平均数,记为 H .若 H f ( x ) G ,求 x 的取值范围.

来源:2013年普通高等学校招生全国统一考试文科数学
  • 更新:2023-11-15
  • 题型:未知
  • 难度:未知

函数,若函数有3个零点,则实数
值为

A.-4 B.-2 C.2 D.4
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(  )

A.y=cos 2x,x∈R
B.y=log2|x|,x∈R且x≠0
C.y=,x∈R
D.y=x3+1,x∈R
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,则的大小关系是(  )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,一元二次方程有整数根的充要条件是=    

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数满足:,则=_____________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数的定义域为(   )

A. B. C. D.
来源:2012届年吉林省长春外国语学校高三第一次月考数学
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若函数的一个正数零点附近的函数值用二分法计算,其参
考数据如下:

那么方程的一个近似根(精确到0.1)为

A.1.2 B.1.3 C.1.4 D.1.5
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题