[山东]2014届山东省烟台市高三上学期期末考试文科数学试卷
已知直线l平面,直线平面,则下列四个结论:
①若,则 ②若,则
③若,则 ④若,则
其中正确的结论的序号是:( )
A.①④ | B.②④ | C.①③ | D.②③ |
已知函数满足,且是偶函数,当时,,若在区间内,函数有三个零点,则实数k的取值范围是( )
A. | B. | C. | D. |
若直线与x轴相交于点A,与y轴相交于点B,且以坐标原点为圆心以为半径的圆与直线l相切,则△AOB面积为_____________.
给出以下四个结论:
①函数的对称中心是
②若不等式对任意的x∈R都成立,则;
③已知点与点Q(l,0)在直线两侧,则;
④若将函数的图像向右平移个单位后变为偶函数,则的最小值是.
其中正确的结论是____________(写出所有正确结论的编号).
在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点在角α的终边上,点在角β的终边上,且
(1)求
(2)求P,Q的坐标并求的值
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录。为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数);已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润是大?
已知是二次函数,不等式的解集是,且在点处的切线与直线平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在区间内有两个不等的实数根?
若存在,求出t的值;若不存在,说明理由.