函数的定义域为D,若对于任意,当时都有,则称函数在D上为非减函数,设函数在[0,1]上为非减函数,且满足以下三个条件:①;②;③,则等于( )
A. | B. | C.1 | D. |
已知函数,
(1)当且时,证明:对,;
(2)若,且存在单调递减区间,求的取值范围;
(3)数列,若存在常数,,都有,则称数列有上界。已知,试判断数列是否有上界.
本题满分分 已知函数f (x)=x3+(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.
设,表示不超过的最大整数.若存在实数,使得,,…,同时成立,则正整数的最大值是()
A. | 3 | B. | 4 | C. | 5 | D. | 6 |