已知函数,(1)当且时,证明:对,;(2)若,且存在单调递减区间,求的取值范围;(3)数列,若存在常数,,都有,则称数列有上界。已知,试判断数列是否有上界.
已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于两点A、B.(1)若|AB|=,求直线l的方程;(2)求|AB|的最小值.
已知抛物线y=x2上存在两个不同的点M、N,关于直线y=-kx+对称,求k的范围.
设抛物线y2=4x截直线y=2x+k所得弦长|AB|=3.(1)求k的值;(2)以弦AB为底边,x轴上的P点为顶点组成的三角形面积为39时,求点P的坐标.
已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和M的值.
设数列的前项和为,若对所有正整数,都有.证明是等差数列.