设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.
已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范围.
对于在区间上有意义的两个函数,如果对于任意的,都有则称在区间上是“接近的”两个函数,否则称它们在区间上是“非接近的”两个函数。现有两个函数给定一个区间。
(1)若在区间有意义,求实数的取值范围;
(2)讨论在区间上是否是“接近的”。
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[,)时,f(x)≤g(x),求a的取值范围.
已知曲线 在点 处的切线 平行直线,且点在第三象限.
(Ⅰ)求的坐标;
(Ⅱ)若直线 , 且 也过切点 ,求直线的方程.
已知函数在处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设、分别是曲线在点和(其中)处的切线,且.
①若与的倾斜角互补,求与的值;
②若(其中是自然对数的底数),求的取值范围.
已知函数在点处的切线方程为.
(I)求,的值;
(II)对函数定义域内的任一个实数,恒成立,求实数的取值范围.