高中数学

已知函数 
(I)当时,求在[1,]上的取值范围。
(II)若在[1,]上为增函数,求a的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数
(I)求x为何值时,上取得最大值;
(II)设是单调递增函数,求a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(其中).
(Ⅰ)求函数的极值;
(Ⅱ)若函数在区间内有两个零点,求正实数a的取值范围;(Ⅲ)求证:当时,.(说明:e是自然对数的底数,e=2.71828…)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数
(1)设,证明:在区间内存在唯一的零点;
(2)设为偶数,,求的最小值和最大值;
(3)设,若对任意,有,求的取值范围;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知函数处取得极值.
(Ⅰ)求的值;
(Ⅱ)若当恒成立,求的取值范围;
(Ⅲ)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数
(1)若不等式的解集.求的值;
(2)若的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.
(Ⅰ)设生物体死亡时体内每克组织中的碳14的含量为1,根据上述规律,写出生物体内碳14的含量与死亡年数之间的函数关系式;
(Ⅱ)湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7℅,试推算马王堆汉墓的年代.(精确到个位;辅助数据:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数 
(1)画出函数的图象;
(2)若不等式 恒成立,求实数的范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的定义域为
(1)求
(2)当时,求的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设分别是曲线在点(其中)处的切线,且
①若的倾斜角互补,求的值;
②若(其中是自然对数的底数),求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数在点处的切线方程为
(I)求的值;
(II)对函数定义域内的任一个实数恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,且
(1)求
(2)判断的奇偶性;
(3)判断上的单调性,并证明。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的最大值为1.
(1)求常数的值;(2)求使成立的x的取值集合.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学函数迭代解答题