高中数学

设函数
(1)若不等式的解集.求的值;
(2)若的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数 
(1)画出函数的图象;
(2)若不等式 恒成立,求实数的范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数=,其中a≠0.
(1)若对一切x∈R,≥1恒成立,求a的取值集合.
(2)在函数的图像上取定两点,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数上的增函数,
(Ⅰ)若,求证:
(Ⅱ)判断(Ⅰ)中命题的逆命题是否成立,并证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当时,求上的最小值;
(2)若函数上为增函数,求正实数的取值范围;
(3)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,处的切线方程为
(Ⅰ)求的单调区间与极值;
(Ⅱ)求的解析式;
(III)当时,恒成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)若函数上有极值,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=ax3+bx2-x(x∈R,a、b是常数,a≠0),且当x=1和x=2时,函数f(x)取得极值.(I)求函数f(x)的解析式;
(Ⅱ)若曲线y=f(x)与g(x)=有两个不同的交点,求实数m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的定义域为
(1)求
(2)当时,求的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设分别是曲线在点(其中)处的切线,且
①若的倾斜角互补,求的值;
②若(其中是自然对数的底数),求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数在点处的切线方程为
(I)求的值;
(II)对函数定义域内的任一个实数恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,且
(1)求
(2)判断的奇偶性;
(3)判断上的单调性,并证明。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学函数迭代解答题