已知函数=,其中a≠0.(1)若对一切x∈R,≥1恒成立,求a的取值集合.(2)在函数的图像上取定两点,,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.
已知矩形纸片ABCD中,AB=6,AD=12,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点,M、N分别位于边AB、BC上,设。 (ⅰ)试将表示成的函数; (ⅱ)求的最小值。
某港口的水深(米)是时间(0≤≤24,单位:小时)的函数,下面是不同时间的水深数据: 根据上述数据描出的曲线如图所示,经拟合,该曲线可近似地看成正弦函数的图像. (1)试根据以上数据,求出的表达式; (2)一般情况下,船舶航行时,船底离海底的距离不少于4.5米时是安全的,如果某船的吃水深度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,则在港内停留的时间最多不能超过多长时间?(忽略进出港所用的时间)?
如图某地夏天从8~14时用电量变化曲线近似满足函数. (1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.
已知函数(,)为偶函数,且其图像上相邻的一个最高点和最低点之间距离为. ⑴求的解析式; ⑵若,求的值。
如图,是单位圆与轴正半轴的交点,点在单位圆上, ,四边形的面积为 (Ⅰ)求的最大值及此时的值; (Ⅱ)设点的坐标为,,在(Ⅰ)的条件下,求