(本题12分)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间,,,,,进行分组,得到频率分布直方图如图. (1)求直方图中的值; (2)计算一年中空气质量为良的天数;(3)某环保部门准备在一年内随机到该城市考察两次空气质量,求两次考察空气质量都为良的概率(结果用分数表示).
已知数列中,,且.求,由此推出表达式.
证明方程在上至多有一实根.
求以相交两圆:及:的公共弦为直径的圆的方程.
某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为.求在一年内李明参加驾照考试次数的分布列和的期望,并求李明在一年内领到驾照的概率.
已知椭圆的离心率,过点和的直线与原点的距离为. (1)求椭圆的方程. (2)已知定点,若直线与椭圆交于两点,试判断:是否存在的值,使以为直径的圆过点?若存在,求出这个值;若不存在,说明理由.