已知数列中,,且.求,由此推出表达式.
设,分别为椭圆的左、右焦点,过的直线与椭圆相交于,两点,直线的倾斜角为,到直线的距离为. (1)求椭圆的焦距; (2)如果,求椭圆的方程.
已知等差数列的前项和为, (1)求数列的通项公式与前项和; (2)设求证:数列中任意不同的三项都不可能成为等比数列
如图,四棱锥中,底面是的菱形, 侧面是边长为2的正三角形,且与底面垂直,为的中点. (1)求证:平面; (2)求二面角的余弦值.
某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品. (1) 随机选取1件产品,求能够通过检测的概率; (2)随机选取3件产品,其中一等品的件数记为,求的数学期望; (3)随机选取3件产品,求这三件产品都不能通过检测的概率.
已知函数f(x)=sin2x+sinxcosx-(xÎR). (1)若,求f(x)的最大值; (2)在△ABC中,若A<B,f(A)=f(B)=,求 的值.