(本小题满分12分)某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2007年底和2008年底的住房面积;(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)
(本小题13分)如图,四棱锥的底面为正方形,平面,且,,,分别是线段,的中点.⑴求直线和所成角的余弦值;⑵求二面角平面角的余弦值.
(本小题13分)盒子里有6张大小相同的卡片,上面分别写着1,2,3,4,5,6这6个数.⑴现从盒子中任取两张卡片,求两张卡片上的数字之和为偶数的概率;⑵现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶数的卡片则停止抽取,否则继续进行,求抽取次数为多少时其概率小于.
(本小题13分)在△中,.⑴求的值;⑵若△的面积为,,求的长.
(本小题12分)已知数列满足:, ,记,为数列的前项和.⑴证明数列为等比数列,并求其通项公式;⑵若对任意且,不等式恒成立,求实数的取值范围;⑶令,证明:.
(本小题12分)设椭圆右焦点为,它与直线相交于、两点,与轴的交点到椭圆左准线的距离为,若椭圆的焦距是与的等差中项.⑴求椭圆离心率;⑵设点与点关于原点对称,若以为圆心,为半径的圆与相切,且求椭圆的方程.