(本小题满分12分)某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2007年底和2008年底的住房面积;(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上. (1)求的值及直线的直角坐标方程; (2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.
在直角坐标系xOy中,直线l的参数方程为(t为参数,0 ≤ α < π).以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρcos2θ = 4sinθ. (1)求直线l与曲线C的平面直角坐标方程; (2)设直线l与曲线C交于不同的两点A、B,若,求α的值.
为了降低能源损耗,某城市对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知不等式ax2-3x+6>4的解集为{x|x<1,或x>b}. (1)求a,b; (2)解不等式ax2-(ac+b)x+bc<0(c∈R).