(本小题满分14分)已知函数处取得极值.(Ⅰ)求的值;(Ⅱ)若当恒成立,求的取值范围;(Ⅲ)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.
.求同时满足下列条件的所有的复数z, ①z+∈R, 且1<z+≤6; ②z的实部和虚部都是整数.
.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数. (1)求的分布列; (2)求的数学期望; (3)求“所选3人中女生人数”的概率.
(本小题14分)设,. (1)当时,求曲线在处的切线方程; (2)如果存在,使得成立, 求满足上述条件的最大整数; (3)如果对任意的,都有成立,求实数的取值范围.
(本小题15分)已知椭圆的右焦点恰好是抛物线的焦点, 点是椭圆的右顶点.过点的直线交抛物线于两点,满足, 其中是坐标原点. (1)求椭圆的方程; (2)过椭圆的左顶点作轴平行线,过点作轴平行线,直线与相交于点.若是以为一条腰的等腰三角形,求直线的方程.
(本小题15分)如图,四棱锥的底面为一直角梯形,其中,底面,是的中点. (1)求证://平面; (2)若平面, ①求异面直线与所成角的余弦值; ②求二面角的余弦值.