(本小题满分14分)
已知函数的图象在上连续不断,定义:
,
.
其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.
(Ⅰ)若,,试写出,的表达式;
(Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
(本小题满分14分)
已知函数,
(I)当时,求函数的极值;
(II)若函数在区间上是单调增函数,求实数的取值范围.
定义在 上的函数 满足 ( ), ,则 等于( )
A. | 2 | B. | 3 | C. | 6 | D. | 9 |
设
表示不超
的最大整数,(如
)。对于给定的
,
定义
则
;
当
时,函数
的值域是 .
设数列的前项和为,对一切,点都在函数图像上,设为数列的前项积,是否存在实数,使得对一切都成立?若存在,求出的范围,若不存在,请说明理由
已知函数。
(1)若函数是上的增函数,求实数的取值范围;
(2)当时,若不等式在区间上恒成立,求实数的取值范围;
(3)对于函数若存在区间,使时,函数的值域也是,则称是上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。
已知当点在的图像上运动时,点函数的图像上运动。
(1)求的表达式;
(2)若集合{关于的方程有实根,},求集合A;
(3)设函数的定义域为<值域为,求实数的值。
对定义在上,并且同时满足以下两个条件的函数称为函数。
①对任意的,总有;
②当时,总有成立。
已知函数与是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,讨论方程解的个数情况。
(本小题共14分)
已知函数,其中.
(Ⅰ)若b>2a,且的最大值为2,最小值为-4,试求函数f(x)的最小值;
(Ⅱ)若对任意实数x,不等式恒成立,且存在使得成立,求c的值.