高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

已知数列满足,给出下列命题:
①当时,数列为递减数列
②当时,数列不一定有最大项
③当时,数列为递减数列
④当为正整数时,数列必有两项相等的最大项
请写出正确的命题的序号____

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放最比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量万吨.
(1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列,求相邻两年主要污染物排放总量的关系式;
(2)证明:数列是等比数列;
(3)若该市始终不需要采取紧急限排措施,求m的取值范围.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为。求

(1)的关系式;
(2)数列的通项公式,并证明:

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

某种汽车购买时费用为万元,每年应交保险费,养路费,保险费共 万元,汽车的维修费为:第一年万元,第二年万元,第三年万元,……,依次成等差数列逐年递增.
(1)设使用年该车的总费用(包括购车费用)为试写出的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

有一个数阵排列如下:

则第20行从左至右第10个数字为           .

  • 更新:2020-03-18
  • 题型:选择题
  • 难度:较难

已知)是曲线上的点,是数列的前项和,且满足 .
(1)证明:数列)是常数数列;
(2)确定的取值集合,使时,数列是单调递增数列;
(3)证明:当时,弦)的斜率随单调递增

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

轴的正方向上,从左向右依次取点列 ,以及在第一象限内的抛物线上从左向右依次取点列,使)都是等边三角形,其中是坐标原点,则第2005个等边三角形的边长是      .

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

对于自然数数组,如下定义该数组的极差:三个数的最大值与最小值的差.如果的极差,可实施如下操作:若中最大的数唯一,则把最大数减2,其余两个数各增加1;若中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为,其级差为.若,则继续对实施操作,…,实施次操作后的结果记为,其极差记为.例如:.
(1)若,求的值;
(2)已知的极差为,若时,恒有,求的所有可能取值;
(3)若是以4为公比的正整数等比数列中的任意三项,求证:存在满足.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

已知,定义.
(1)如果,则       
(2)如果,则的取值范围是               .

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

数列中,,(是常数,),且成公比不为的等比数列,则的通项公式是______.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

如果存在常数a使得数列满足:若x是数列中的任意一项,则也是数列中的一项,称数列为“兑换数列”,常数a是它的“兑换系数”.如数列:1,3,6,8是以9为“兑换系数”的“兑换数列”.已知等差数列是“兑换数列”,则数列的“兑换系数”是         

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

若f(x)=,则f(1)+f(2)+f(3)…+f(2011)+f()+f()+…+f()=(  )

A.2009 B.2010 C.2012 D.1
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:较难

已知数列满足
(1)分别求的值。
(2)猜想的通项公式,并用数学归纳法证明。

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

已知数列中,其前项和满足: 
(1)试求数列的通项公式;
(2)求数列的前项和.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

正项数列的前项和满足:
(1)求数列的通项公式;
(2)令,求数列的前项和.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:较难

高中数学一阶、二阶线性常系数递归数列的通项公式试题