(本小题满分16分)已知数列、满足,,其中,则称为的“生成数列”.
(1)若数列的“生成数列”是,求;
(2)若为偶数,且的“生成数列”是,证明:的“生成数列”是;
(3)若为奇数,且的“生成数列”是,的“生成数列”是,…,依次将数列,,,…的第项取出,构成数列.
探究:数列是否为等比数列,并说明理由.
给定有限单调递增数列,数列至少有两项)且
,定义集合.若对任意点,
存在点使得为坐标原点),则称数列具有性质.
(1)给出下列四个命题,其中正确的是 .(填上所有正确命题的序号)
①数列-2,2具有性质;
②数列:-2,-1,1,3具有性质;
③若数列具有性质,则中一定存在两项,使得;
④若数列具有性质,且,则.
(2)若数列只有2014项且具有性质,则的所有项和 .
对数列,若区间满足下列条件:
①;②,
则称为区间套。下列选项中,可以构成区间套的数列是( )
A.; |
B. |
C. |
D. |
已知数列满足,(),计算并观察数列的前若干项,根据前若干项的变化规律推测, .
若数列满足=(n∈N*,为常数),则称数列为“调和数列”.已知正项数列为“调和数列”,且,则的最大值是 ( )
A.10 | B.100 | C.200 | D.400 |
设为数列的前n项和,若是非零常数,则称该数列为“和等比数列”.若数列是首项为,公差为()的等差数列,且数列是“和等比数列”,则与的关系式为 .
已知数列{an}:a1,a2,a3,…,an,如果数列{bn}:b1,b2,b3,…,bn满足b1=an,bk=ak-1+ak-bk-1,其中k=2,3,…,n,则称{bn}为{an}的“衍生数列”.若数列{an}:a1,a2,a3,a4的“衍生数列”是5,-2,7,2,则{an}为________;若n为偶数,且{an}的“衍生数列”是{bn},则{bn}的“衍生数列”是________.
对于数对序列,记,,其中表示和两个数中最大的数.
(1)对于数对序列,求的值;
(2)记为四个数中最小的数,对于由两个数对组成的数对序列和,试分别对和两种情况比较和的大小;(3)在由五个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).
对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________
对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________