【原创】(本小题满分12分)已知.
(Ⅰ)求函数的最小正周期和对称中心;
(Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.
已知.
(1)求的单调区间;
(2)令,则时有两个不同的根,求的取值范围;
(3)存在,且,使成立,求的取值范围.
已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有实数根,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
(本小题满分16分)已知函数,其中a为实数.
(1)是否存在?若存在,求出实数a的取值范围;若不存在,请说明理由.
(2)若集合中恰有5个元素,求实数a的取值范围.
已知函数,则方程恰有两个不同实数根时,实数的取值范围是( )
A. | B. | C. | D. |
根据表格内的数据,可以断定方程的一个根所在区间是( )
-1 |
0 |
1 |
2 |
3 |
|
0.37 |
1 |
2.72 |
7.39 |
20.08 |
|
2 |
3 |
4 |
5 |
6 |
A、
B、
C、
D、
设函数
(1)若关于的不等式在有实数解,求实数的取值范围;
(2)设,若关于的方程至少有一个解,求 的最小值.
(3)证明不等式:
已知函数 ,若存在实数,且则的取值范围是( )
A.(0,12) | B.(4.16) | C.(9,21) | D.(15,25) |