高中数学

(本小题满分14分)平面内一动点到定点和到定直线的距离相等,设的轨迹是曲线
(1)求曲线的方程;
(2)在曲线上找一点,使得点到直线的距离最短,求出点的坐标;
(3)设直线,问当实数为何值时,直线与曲线有交点?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知函数
(1)若对于区间内的任意,总有成立,求实数的取值范围;
(2)若函数在区间内有两个不同的零点,求:
①实数的取值范围;      ②的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数上有最大值1和最小值0,设
为自然对数的底数).
(1)求的值;
(2)若不等式上有解,求实数的取值范围;
(3)若方程有三个不同的实数解,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数在区间上的所有零点之和等于 (    )

A.2 B.6 C.8 D.10
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,则关于的方程的实根个数不可能为(    )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知
(1)求的单调区间;
(2)令,则时有两个不同的根,求的取值范围;
(3)存在,使成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分16分)已知函数,其中a为实数.
(1)是否存在?若存在,求出实数a的取值范围;若不存在,请说明理由.
(2)若集合中恰有5个元素,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知
(1)求的单调区间;
(2)令,则时有两个不同的根,求的取值范围;
(3)存在,使成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知为非零实数,,且.若当时,对于任意实数,均有,则值域中取不到的唯一的实数是         

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

,若
(1)证明:
(2)试判断函数内的零点个数,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

根据表格内的数据,可以断定方程的一个根所在区间是(    )


-1
0
1
2
3

0.37
1
2.72
7.39
20.08

2
3
4
5
6

A、
B、
C、
D、

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,设方程的四个实根从小到大依次为,对于满足条件的任意一组实根,下列判断中一定正确的为(     )

A. B.
C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(1)当 (为自然对数的底数)时,求的极小值;
(2)讨论函数零点的个数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(1)若关于的不等式有实数解,求实数的取值范围;    
(2)设,若关于的方程至少有一个解,求 的最小值.  
(3)证明不等式:    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数 ,若存在实数,且的取值范围是(   )

A.(0,12) B.(4.16) C.(9,21) D.(15,25)
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组试题