设f(x)=3x + 3x-8,用二分法求方程3x + 3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )
A.(1.25,1.5) | B.(1,1.25) | C.(1.5,2) | D.不能确定 |
已知函数,现将的图像向右平移一个单位,再向上平移一个单位得到函数的图像.
(1)求函数的解析式;
(2)函数的图像与函数的图像在上至少有一个交点,求实数的取值范围.
已知函数
(1)若函数的图象与x轴无交点,求a的取值范围;
(2) 若函数在[-1,1]上存在零点,求a的取值范围;
(3)设函数,当时,若对任意的,总存在,使得,求b的取值范围.
已知函数f(x)=,若存在实数a,b,c,d,满足f(a)=f(b)=f(c)=f(d),其中0<a<b<c<d,则abcd的取值范围 .
函数 ,若实数满足=1,则实数的所有取值的和为( )
A.1 | B. | C. | D. |
关于的方程,给出下列四个命题:
①存在实数,使得方程恰有2个不同的实根
②存在实数,使得方程恰有4个不同的实根
③存在实数,使得方程恰有5个不同的实根
④存在实数,使得方程恰有8个不同的实根
其中假命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
已知定义在R上的函数 且.若方程有三个不相等的实数根,则实数k的取值范围是( )
A. | B. | C. | D. |