高中数学

(本小题满分12分)
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数有3个不同的零点(其中为自然对数的底数),则实数的取值范围是(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知二次函数,且不等式的解集为
(Ⅰ) 若方程有两个相等的实根,求的解析式;
(Ⅱ) 若函数的最小值不大于,求实数的取值范围。
(Ⅲ) 如何取值时,函数()存在零点,并求出零点.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于函数
(1)先判断函数的单调性,再证明之;
(2)实数=1时,证明函数为奇函数;
(3)求使有解的实数的取值范围

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若一次函数有一个零点是2,则二次函数的零点是        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,若有且仅有三个解,则实数的取值范围是

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数f(x)=3ax﹣2a+1在[﹣1,1]上存在一个零点,则实数a的取值范围是( )

A. B.a≤﹣1 C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若函数f(x)=x2+ax+1在(0,2)上有两个零点,则实数a的取值范围为    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数,则满足的值是( )

A.2 B.16 C.2或16 D.-2或16
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数的导函数为,且.
(1)求的解析式;
(2)若方程在区间上恰有两个不同的实根,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是定义在上的偶函数,当时,
(1)求的值;
(2)求的解析式;并画出简图;

(3)利用图象讨论方程的根的情况(只需写出结果,不要解答过程).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知


已知函数 (为自然对数的底数,).
(1)判断曲线在点处的切线与曲线的公共点个数;
(2)当时,若函数有两个零点,求a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数的零点一定位于区间(   ).

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若关于的方程在区间上有实数根,则实数的取值范围是

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)设关于的方程
(1)若方程有实数解,求实数的取值范围;
(2)当方程有实数解时,讨论方程实根的个数,并求出方程的解。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组试题