(本小题满分12分)
东莞市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
(本小题满分14分)甲、乙两间商店购进同一种商品的价格均为每件30元,销售价均为每件50元.根据前5年的有关资料统计,甲商店这种商品的年需求量服从以下分布:
10 |
20 |
30 |
40 |
50 |
|
0.15 |
0.20 |
0.25 |
0.30 |
0.10 |
乙商店这种商品的年需求量服从二项分布.
若这种商品在一年内没有售完,则甲商店在一年后以每件25元的价格处理;乙商店一年后剩下的这种商品第1件按25元的价格处理,第2件按24元的价格处理,第3件按23元的价格处理,依此类推.今年甲、乙两间商店同时购进这种商品40件,根据前5年的销售情况,请你预测哪间商店的期望利润较大?
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,.(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望
设排球队A与B进行比赛,规定若有一队胜四场,则为获胜队,已知两队水平相当
(1)求A队第一、五场输,第二、三、四场赢,最终获胜的概率;
(2)若要决出胜负,平均需要比赛几场?
某批数量较大的商品的次品率是5%,从中任意地连续取出10件,为所含次品的个数,求.
分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数服从二项分布,由公式可得解.
有n把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.
分析:求时,由题知前次没打开,恰第k次打开.不过,一般我们应从简单的地方入手,如,发现规律后,推广到一般
(本题满分12分)有人预测:在2010年的广州亚运会上,排球赛决赛将在中国队与日本队之间展开,据以往统计, 中国队在每局比赛中胜日本队的概率为,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛.(Ⅰ)求中国队以3:1获胜的概率;(Ⅱ)设表示比赛的局数,求的期望值.
(本小题满分12分) 不透明盒中装有10个形状大小一样的小球,其中有2个小球上标有数字1,有3个小球上标有数字2,还有5个小球上标有数字3.取出一球记下所标数字后放回,再取一球记下所标数字,共取两次.设两次取出的小球上的数字之和为ξ.
(Ⅰ)求随机变量ξ的分布列; (Ⅱ)求随机变量ξ的期望Eξ.
(本小题满分12分)设是一个离散型随机变量,其分布列如下表,试求随机变量的期望与方差.
ξ |
-1 |
0 |
1 |
P |
1-2q |
q2 |
(本小题满分12分)学网某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间,及这三种情况发生的概率分别为,,,叉知,是方程的两个根,且(1)求,,的值;(2)记表示销售两台这种家用电器的销售利润总和,求的期望.
((12分)大学毕业生小明到甲、乙、丙三个单位应聘,其被录用的概率分别为(各单位是否录用他相互独立,允许小明被多个单位同时录用) (1)求小明没有被录用的概率;(2)设录用小明的单位个数为,求的分布列和它的数学期望。
在1,2,3…,9,这9个自然数中,任取3个数.
(Ⅰ)求这3个数中,恰有一个是偶数的概率;
(Ⅱ)记
为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时
的值是2)。求随机变量
的分布列及其数学期望
将数字分别写在大小、形状都相同的张卡片上,将它们反扣后(数字向下),再从左到右随机的依次摆放,然后从左到右依次翻卡片:若第一次就翻出数字则停止翻卡片;否则就继续翻,若将翻出的卡片上的数字依次相加所得的和是的倍数则停止翻卡片;否则将卡片依次翻完也停止翻卡片.设翻卡片停止时所翻的次数为随机变量,求出的分布列和它的数学期望.
某公司“咨询热线”电话共有10路外线,经长期统计发现,在8点至10点这段时间内,英才苑外线电话同时打入情况如下表所示:
电话同时打入数ξ |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
概率P |
0.13 |
0.35 |
0.27 |
0.14 |
0.08 |
0.02 |
0.01 |
0 |
0 |
0 |
0 |
(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话).
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这一时间内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话一次不能接通的概率表示公司形象的“损害度”,求这种情况下公司形象的“损害度”;(2)求一周五个工作日的这一时间内,同时打入的电话数ξ的期望值.