((12分)大学毕业生小明到甲、乙、丙三个单位应聘,其被录用的概率分别为(各单位是否录用他相互独立,允许小明被多个单位同时录用) (1)求小明没有被录用的概率;(2)设录用小明的单位个数为,求的分布列和它的数学期望。
(本题10分) 在中,内角对边的边长分别是,已知,.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.
(本小题满分7分)选修;不等式选讲已知为正实数,且,求的最小值及取得最小值时的值.
(本小题满分7分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线l的极坐标方程为,圆的参数方程为(参数),求圆心到直线的距离.
(本小题满分7分)选修4-2:矩阵与变换已知矩阵,其中R,若点P(1,1)在矩阵A的变换下得到点P′(0,-3),求矩阵A的特征值及特征向量.
已知函数 的定义域为.(Ⅰ)求实数的值;(Ⅱ)探究是否是上的单调函数?若是,请证明;若不是,请说明理由; (Ⅲ)求证:,(其中为自然对数的底数).