高中数学

如图,四边形PCBM是直角梯形,.又,直线与直线所成的角为60°.
(1)求证:
(2)求三棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在正方体中,分别为棱的中点.

(1)求证:∥平面
(2)求CB1与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,上一点,面,四边形为矩形 ,,
(1)已知,且∥面,求的值;
(2)求证:,并求点到面的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.

(1)求四棱锥F﹣ABCD的体积VF﹣ABCD
(2)求证:平面AFC⊥平面CBF;
(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.                    
(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;
(2)若棱锥E-DFC的体积为,求的值;
(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,平面平面,,点在线段上移动.

(1)当点的中点时,求证:平面
(2)求证:无论点在线段的何处,总有

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设P、Q是单位正方体AC1的面AA1D1D、面A1B1C1D1的中心.
 
(1)证明:PQ∥平面AA1B1B;
(2)求异面直线PQ和所成的角.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(1)求证:∥平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱中,分别为中点,.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.

(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,底面,点的中点. 

(Ⅰ)求证:
(Ⅱ)求证:∥平面
(Ⅲ)设,在线段上是否存在点,使得?若存在,确定点的位置;                         若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,的中点,的中点.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1)求证:平面AB1C1⊥平面AC1
(2)若AB1⊥A1C,求线段AC与AA1长度之比;
(3)若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题