(本小题满分14分)如图,四棱锥中,,底面为梯形,,,且,.
(1)求证:;
(2)求二面角的余弦值.
(本小题12分)在正三棱柱中,底面三角形ABC的边长为,侧棱的长为,D为棱的中点.
(1)求证:∥平面
(2)求二面角的大小
(3)求点到平面的距离.
(本小题满分10分)已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,//
(1)证明:
(2)设二面角的平面角为,求;
(3)M为AD的中点,在DE上是否存在一点P,使得MP//平面BCE?若存在,求出DP的长;若不存在,请说明理由。
如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,.
(1)求证:平面;
(2)求平面与平面所成锐二面角的余弦值;
(3)求直线与平面所成角的余弦值.
如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=,M是线段B1D1的中点.
(1)求证:BM∥平面D1AC;
(2)求证:D1O⊥平面AB1C;
(3)求二面角B-AB1-C的大小.
(本小题12分)在正三棱柱中,底面三角形ABC的边长为,侧棱的长为,D为棱的中点.
①求证:∥平面
②求二面角的大小
③求点到平面的距离.
如图所示,正方形所在的平面与等腰所在的平面互相垂直,其中顶,,为线段的中点.
(1)若是线段上的中点,求证: 平面;
(2)若是线段上的一个动点,设直线与平面所成角的大小为,求的最大值.
如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,E,F分别为棱AB,PC的中点
(1)求证:PE⊥BC;
(2)求证:EF∥平面PAD.
(本小题满分15分)如图,正方形的边长为1,正方形所在平面与平面互相垂直,是的中点.
(1)求证:平面;
(2)求证:;
(3)求三棱锥的体积.
如图,在三棱锥中,△和△都为正三角形且,,,,分别是棱,,的中点,为的中点.
(1)求异面直线和所成的角的大小;
(2)求证:直线平面.
已知某几何体的三视图和直观图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成角的余弦值;
(Ⅲ)设为中点,在棱上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.
如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的平面角的余弦值..