已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m⊂β,则α⊥β;
②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
③m⊂α,n⊂α,m、n是异面直线,那么n与α相交;
④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.
其中正确的命题是( )
A.①② | B.②③ | C.③④ | D.①④ |
已知表示两条不同直线,表示三个不同平面,给出下列命题:
①若则;
②若,垂直于内的任意一条直线,则;
③若则;
④若不垂直于平面,则不可能垂直于平面内的无数条直线;
⑤若∥,则∥.
上述五个命题中,正确命题的个数是( )个
A.5 | B.4 | C.3 | D.2 |
已知平面、、,则下列说法正确的是( )
A.,则 |
B.,则 |
C.,则 |
D.,则 |
下列命题:
①平行于同一平面的两直线相互平行;
②平行于同一直线的两平面相互平行;
③垂直于同一平面的两平面相互平行;
④垂直于同一直线的两平面相互平行;
⑤垂直于同一直线的两直线相互平行.
其中正确的有( )
A.4个 | B.3个 | C.2个 | D.1个 |
一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中( )
A.AB∥CD B.AB与CD相交
C.AB⊥CD D.AB与CD所成的角为60°
设m,n是两条不同的直线,α,β是两个不同的平面.则( )
A.若m⊥n,n∥α,则m⊥α |
B.若m∥β,β⊥α,则m⊥α |
C.若m⊥β,n⊥β,n⊥α,则m⊥α |
D.若m⊥n,n⊥β,β⊥α,则m⊥α |
在直三棱柱中,AA1="AB=BC=3,AC=2," D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.
如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.
(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.