如图,在多面体中,四边形是平行四边形,,,若是等边三角形,且,.(Ⅰ)求证:面;(Ⅱ)求二面角的余弦值的大小.
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=x+an+1cos x-an+2sin x满足f′=0.(1)求数列{an}的通项公式;(2)若bn=2,求数列{bn}的前n项和Sn.
已知{an}是一个公差大于0的等差数列,且满足a4a5=55,a3+a6=16(1)求数列{an}的通项公式;(2)若数列{an}和数列{bn}满足等式:an-1=,an=(为正整数),设数列{bn}的前项和,cn=(an+19)(Sn+50),数列{cn}前n项和为Tn,求Tn的最小值
设函数f(x)=a·b,其中向量,向量.(1)求f(x)的最小正周期;(2)在∆ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,a=,b+c=3,求b,c的长.
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.(Ⅰ)求的值;(Ⅱ)求的单调区间;(Ⅲ)设,其中为的导函数.证明:对任意.
设函数(1)讨论函数的极值点;(2)若对任意的,恒有,求的取值范围.