如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.(Ⅰ)求证:PB⊥DM;(Ⅱ)求点B到平面PAC的距离.
用反证法证明:若三个互不相等的正数,成等差数列,求证:不可能成等比数列。
计算:(1)、 (2)、(3)、
已知函数R).(1)若,且在时有最小值,求的表达式; (2)若,且不等式对任意满足条件的实数恒成立,求常数取值范围.
已知抛物线C:的焦点为F,直线交抛物线于、两点,是线段的中点,过作轴的垂线交抛物线于点.(1)若直线AB过焦点F,求的值;(2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由.
如图,在三棱锥中,和都是以为斜边的等腰直角三角形,若,是的中点(1)证明:;(2)求与平面所成角的正弦值.