用反证法证明:若三个互不相等的正数,成等差数列,求证:不可能成等比数列。
已知函数f(x)=loga (a>0,且a≠1,b>0). (1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)讨论f(x)的单调性.
已知定义域为R的函数f(x)为奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1.(1)求f(x)在[-1,0)上的解析式;(2)求f(log24).
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)图象上任意一点P关于原点对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
已知函数f(x)=log2(x2-ax-a)在区间(-∞,1-]上是单调递减函数.求实数a的取值范围.
已知f(x)=.(1)判断函数的奇偶性;(2)证明:f(x)是定义域内的增函数;(3)求f(x)的值域.