高中数学

如图,三棱柱中,侧棱垂直底面,是棱的中点.

(1)证明:平面⊥平面
(2)平面分此棱柱为两部分,求这两部分体积的比.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,平面平面,且.

(Ⅰ)求证:平面
(Ⅱ)求直线和平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,平面平面,四边形是边长为2的正方形,上的点,且平面

(1)求证平面
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形ABCD中,,将沿折起,使平面平面,得到三棱锥,如图2所示.

(Ⅰ)求证:平面
(Ⅱ)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,°,平面平面分别为中点.

(1)求证:
(2)求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,,,,在底面ABC的射影为BC的中点,D为的中点.

(1)证明:
(2)求直线和平面所成的角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,是直角梯形底边的中点,,将△沿折起形成四棱锥

(1)求证:平面
(2)若二面角,求二面角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点.

(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,分别为的中点;

(1)求证: ;
(2)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:平面
(2)过点E作截面平面,分别交CB于F,于H,求截面的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知两直线.试确定的值,使
(1)相交于点
(2)
(3),且轴上的截距为-1.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=DC, 点E是PC的中点,作交PB于点F.

(1)求证:PB⊥平面EFD; 
(2)求二面角C-PB-D的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:平面;
(2)过点E作截面平面,分别交CB于F,于H,求截面的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点的中点,点是边上的任意一点.

(1)求证:
(2)求二面角的平面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题