(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于
(1)求证:⊥EF;
(2)求
一个几何体是由圆柱和三棱锥组合而成,点A、B、C在圆柱上底面圆O的圆周上,平面,,,其正视图、侧视图如图所示.
(1)求证:;
(2)求锐二面角的大小.
(本小题满分12分)已知四棱锥,侧面底面,侧面为等边三角形,底面为菱形,且.
(1)求证:;
(2)求平面与平面所成的角(锐角)的余弦值.
如图,已知直角梯形所在的平面垂直于平面,,,.
(Ⅰ)点是直线中点,证明平面;
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
(本小题满分14分)
如图6,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,直线平面.
(1)证明:;
(2)在上是否存在一点,使得∥平面,若存在,请确定点的位置,并证明之;若不存在,请说明理由;
(3)求点到平面的距离.
如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点
(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC
如图,在四棱锥A-BCDE中,侧面∆ADE是等边三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中点,F是AC的中点,且AC=4,
求证:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.