(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
⑴求证:PA∥平面BDE;
⑵求证:平面BDE⊥平面PBC.
(本小题满分12分)
如图,已知,分别是正方形边,的中点,与交于点,都垂直于平面,且,是中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值.
在底面是矩形的四棱锥PABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角EACD的余弦值;
(3)求直线CD与平面AEC所成角的正弦值.
(本小题满分12分)如图1,在边长为的正方形中,,且,且,分别交于点,将该正方形沿折叠,使得与重合,构成图所示的三棱柱,在图中:
(1)求证:;
(2)在底边上有一点,使得平面,求点到平面的距离.
如图,四棱锥的底面是正方形,,点在棱上
(1)求证:平面平面;
(2)当,且时,确定点的位置,即求出的值
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
(本小题满分12分)如图,在四棱锥中,底面,是直角梯形,,,,是的中点.
(1)求证;平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
(本小题满分15分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,.
(Ⅰ) 证明:;
(Ⅱ) 若为上的动点,求与平面所成最大角的正切值.
(本小题满分12分)已知四棱锥中,平面,底面是边长为的菱形,,.
(1)求证:平面平面;
(2)设与交于点,为中点,若二面角的余弦值为,求的值.
(本小题满分14分)如图所示的四棱锥P—ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面PBD.