(本小题满分12分)如图1,在边长为的正方形中,,且,且,分别交于点,将该正方形沿折叠,使得与重合,构成图所示的三棱柱,在图中:(1)求证:;(2)在底边上有一点,使得平面,求点到平面的距离.
已知函数f(x)= (a∈R).(1)求f(x)的极值;(2)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.
设函数f(x)=x2+2x+kln x,其中k≠0.(1)当k>0时,判断f(x)在(0,+∞)上的单调性;(2)讨论f(x)的极值点.
设数列的前项和为,已知(,为常数),,,(1)求数列的通项公式;(2)求所有满足等式成立的正整数,.
已知分别是中角的对边,且,⑴求角的大小;⑵若,求的值.
若等比数列的前n项和,(1)求实数的值;(2)求数列的前n项和.