已知抛物线(为非零常数)的焦点为,点为抛物线上一个动点,过点且与抛物线相切的直线记为.(1)求的坐标;(2)当点在何处时,点到直线的距离最小?
已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.(1)求f(x)的极值.(2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.
已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.(1)求函数f(x)的最小值.(2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.
已知函数f(x)=2x,g(x)=+2.(1)求函数g(x)的值域.(2)求满足方程f(x)-g(x)=0的x的值.
设函数f(x)=log3(9x)·log3(3x),≤x≤9.(1)若m=log3x,求m的取值范围.(2)求f(x)的最值,并给出最值时对应的x的值.
(14分)已知.(1)求的单调区间和极值;(2)是否存在,使得在的切线相同?若存在,求出及在处的切线;若不存在,请说明理由;(3)若不等式在恒成立,求的取值范围.