已知各项均为正数的两个数列 { a n } 和 { b n } 满足: a n + 1 = a n + b n a n 2 + b n 2 , n ∈ N * , (1)设 b n + 1 = 1 + b n a n , n ∈ N * ,求证:数列 { ( b n a n ) 2 } 是等差数列;
(2)设 b n + 1 = 2 · b n a n , n ∈ N * ,且 { a n } 是等比数列,求 a 1 和 b 1 的值.
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;(Ⅱ)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围.
设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值.
已知 a n 是一个等差数列,且 a 2 = - 1 , a 5 = - 5 .
(Ⅰ)求 a n 的通项 a n
(Ⅱ)求 a n 前 n 项和 S n 的最大值.
已知A、B、C为三个锐角,且A+B+C=π.若向量=(2-2sinA,cosA+sinA)与向量=(cosA-sinA,1+sinA)是共线向量.(Ⅰ)求角A;(Ⅱ)求函数y=2sin2B+cos的最大值.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(Ⅰ)若△ABC的面积S=,求b+c的值.(Ⅱ)求b+c的取值范围.