如图,在直三棱柱 A B C - A 1 B 1 C 1 中, A 1 B 1 = A 1 C 1 , D , E 分别是棱 B C , C C 1 上的点(点 D 不同于点 C ),且 A D ⊥ D E , F 为 B 1 C 1 的中点.
求证:(1)平面平面; (2)直线 A 1 F / / 平面 A D E .
已知函数 (1)求函数的单调区间和值域。 (2)设,求函数,若对于任意,总存在,使得成立,求实数的取值范围。
已知椭圆的右焦点为,离心率,椭圆上的点到距离的最大值为,直线过点与椭圆交于不同的两点。 (1)求椭圆的方程。 (2)若,求直线的方程。
如图,在四棱锥中,底面为平行四边形,为中点,面,,为中点。 (1)求证:面。 (2)求证:面。 (3)求直线与平面所成角的正切值。
的三个内角的对边分别为,且。 (1)求角的大小。 (2)当取最大值时,求角的大小。
已知等差数列的公差, 是等比数列,又。 (1)求数列及数列的通项公式; (2)设,求数列的前项和。