如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
已知函数. (1)证明:; (2)求不等式的解集.
已知函数. (1)求函数的单调递增区间; (2)在,求三角形的面积.
已知函数,(且)恒过定点, (1)求实数; (2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式; (3)对于定义在的函数,若在其定义域内,不等式恒成立,求的取值范围.
设函数,其中. (1)若,的定义域为区间,求的最大值和最小值; (2)若的定义域为区间(0,+∞),求的取值范围,使在定义域内是单调减函数.
正方体中. (1)求证:平面平面; (2)若分别是的中点,求证:平面平面.