如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,,点分别是线段的中点.
(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面
ABCD,AE⊥BD,CB=CD=CF=1,
(1)求证:BD⊥平面AED;
(2)求B到平面FDC的距离.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求证:BD⊥AA1;
若四边形是菱形,且,求四棱柱的体积.
(本小题满分14分)如图,在四面体中,,点是的中点,点在线段上,且.
(1)若∥平面,求实数的值;
(2)求证:平面平面.
(本小题满分14分)如图,在四面体中,,点是的中点,点在线段上,且.
(1)若∥平面,求实数的值;
(2)求证:平面平面.
如图,在底面为平行四边形的四棱锥中, ,平面,点是的中点.
(1)求证:;
(2)求证:平面;
己知斜三棱柱的底面是边长为的正三角形,侧面为菱形,,平面平面,是的中点.
(1)求证:;
(2)求二面角的余弦值.
如图,、为圆柱的母线,是底面圆的直径,、分别是、的中点,.
(1)证明:;
(2)证明:;
(3)求四棱锥与圆柱的体积比.
(本小题满分13分)
如图,⊙O在平面内,AB是⊙O的直径,平面,C为圆周上不同于A、B的任意一点,M,N,Q分别是PA,PC,PB的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求证:平面.
(本小题满分14分)如图,在五面体中,四边形为正方形,,平面平面,且,,点G是EF的中点.
(Ⅰ)证明:;
(Ⅱ)若点在线段上,且,求证://平面;
(Ⅲ)已知空间中有一点O到五点的距离相等,请指出点的位置. (只需写出结论)