高中数学

下列命题中,错误的是(  )

A.平行于同一平面的两个不同平面平行
B.一条直线与两个平行平面中的一个相交,则必与另一个平面相交
C.如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直
D.若直线不平行于平面,则此直线与这个平面内的直线都不平行
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)在三棱柱中,相交于点

(1)求证:平面
(2)求二面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥中,底面是直角梯形,的中点.

(1)求证;平面平面
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱锥中,,若是该三棱锥外部(不含表面)的一点,则下列命题正确的是(   )
① 存在无数个点,使
② 存在唯一点,使四面体为正三棱锥;
③ 存在无数个点,使
④ 存在唯一点,使四面体有三个面为直角三角形.

A.①③ B.①④ C.①③④ D.①②④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设m,n是两条不同的直线,α,β是两个不同的平面( )

A.若m⊥n,n∥α,则m⊥α
B.若m∥β,β⊥α,则m⊥α
C.若m⊥β,n⊥β,n⊥α,则m⊥α
D.若m⊥n,n⊥β,β⊥α,则m⊥α
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若空间三条直线满足,则直线(   )

A.一定平行 B.一定相交 C.一定是异面直线 D.一定垂直
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三条不重合的直线及三个不重合的平面,下列命题正确的是

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是两条不同直线,是一个平面,则下列说法正确的是(  )

A.若.b,则
B.若,b,则
C.若,则
D.若,b⊥,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若两个平面互相垂直,则下列命题中正确的是(  )

A.一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
B.一个平面内的已知直线必垂直于另一个平面内的无数条直线;
C.一个平面内的任意一条直线必垂直于另一个平面;
D.过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有三个命题:
①垂直于同一个平面的两条直线平行;
②∀x∈R,x4>x2
③命题“所有能被2整除的整数都是偶数”的否定是:所有能被2整除的整数都不是偶数.
其中正确命题的个数为(  )

A.0 B.1 C.2 D.3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体.
以上结论其中正确的是________(写出所有正确结论的编号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,的中点,是AC与的交点,将沿折起到图2中的位置,得到四棱锥

(Ⅰ)证明:平面
(Ⅱ)当平面平面时,四棱锥的体积为,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三条不重合的直线及三个不重合的平面,下列命题正确的是

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题