正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an.
(2)令bn=,求数列{bn}的前n项和Tn.
如图,在平面直角坐标系中,圆交轴于点(点在轴的负半轴上),点为圆上一动点,分别交直线于两点。
(1)求两点纵坐标的乘积;
(2)若点的坐标为,连接交圆于另一点.
①试判断点与以为直径的圆的位置关系,并说明理由;
②记的斜率分别为,试探究是否为定值?若是,请求出该定值;若不是,请说明理由.
某车间将10名技工平均分为甲,乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
(1)分别求出甲,乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(2)质检部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为(为参数),直线与曲线分别交于两点.
(1)写出曲线的平面直角坐标方程和直线的普通方程;
(2)若成等比数列,求实数的值.